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A new method to identify modal parameters (natural frequency and damping) and the
equivalent gear error of a spur gear pair is introduced. The equivalent error is a function
of the gear position and is related to the errors of the driving and the driven gears and
to the non-dimensional stiffness of the teeth. The method is based on the measurement of
the gear torsional vibrations. The test rig is modelled as a single-degree-of-freedom system
and must be assembled by using stiff bearings and torsionally compliant shafts. The
solution of the equation of motion is obtained through the harmonic balance method. The
proposed approach has some advantages with respect to traditional metrological methods.
The effect of noise on the accuracy of the identification is also investigated and discussed.
Applications of the method to the identification of natural frequency, damping and profile
errors are shown.
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1. INTRODUCTION

Many papers have been published in the past 15 years on the effect of gear errors on the
dynamic response of gear pairs, e.g. references [1–16]. Vibrations of gear pairs are largely
affected by the amplitude and phase of deviations of the tooth profile from the true involute
one. Pitch, pressure angle and mounting (eccentricities and misalignments) errors are also
of great importance. As a result, gear errors must be checked in order to avoid bad working
conditions of high-speed gears and silent reducers. In addition, profile modifications are
introduced to reduce gear vibrations, therefore, their accuracy and efficacy must be
verified. Analytical [3, 14, 17–20], numerical [2, 9–13, 15, 21–26] and approximate [6]
methods were proposed in the past to simulate the dynamics of a spur gear pair, and single
[2, 3, 5–12, 23, 24], multi [4, 20, 25–27] or infinite [28] degrees of freedom were used by
different authors to model the system’s behaviours. Multi axes reducers were also
investigated e.g. in references [13, 14].

An extended review of the literature on gear dynamics is presented by Özgüven and
Houser [1] and a review of the theory and experimental measurement of gear transmission
error is given by Munro [29]. In the present work, references [2, 3, 5, 6, 10] are extensively
used. Özgüven and Houser [2] used a single-degree-of-freedom model that includes the
effects of variable mesh stiffness, damping, gear errors, profile modifications and backlash.
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Amabili and Rivola [3] included the effect of time-varying meshing damping; in this case
the solution is obtained by using the harmonic balance method. Cai and Hayashi [5]
proposed a method to calculate the optimum profile modification in order to obtain a zero
vibration of the gear pair. They also proposed [6] a linear approximate equation to model
the gear pair by using a single-degree-of-freedom model. Experimental results were
obtained by using a sophisticated test rig with high stiffness air bearings specifically
designed for this application. Umezawa et al. [10] also used a single-degree-of-freedom
numerical simulation, the results of which are compared with experimental dynamic
transmission errors obtained for a gear pair having unit gear ratio.

In the present study, a method based on the measurement of the gear torsional
vibrations is proposed to identify the natural frequency and the damping of the system
and to evaluate the equivalent gear error of a spur gear pair. The equivalent error is a
function of the gear position having length as its dimension. It is related to the errors of
the driving and the driven gears and to the non-dimensional stiffness of the teeth. The
system is analytically studied by using a single-degree-of-freedom system capable of
modelling the experimental test rig. This must be assembled using stiff bearings and
torsionally compliant shafts. However, the shafts must be stiff with respect to flexion at
the gears’ position. In fact, this design criterion ensures a good approximation to uncouple
the torsional vibrations of the two gears due to mesh stiffness from the other modes of
the test rig. This kind of apparatus was recently assembled, e.g., by Cai and Hayashi [6]
and Blankenship and Kahraman [30, 31]. If gear pairs have different centre distances, an
appropriate housing or different housings must be built.

The solution of the equation of motion is obtained through the harmonic balance
method [32]. This solution is suitable to model spur gear pairs having low contact ratio
o (i.e., 1Q oQ 2) and to identify pitch, profile, pressure angle and runout errors. Results
can be obtained by using an experimental apparatus requiring only the measurement of
vibration response of the driven gear (or driving and driven gears) during a revolution for
at least three different rotational speeds. The gear pair must be tested with a fixed static
load. In the case of testing a single gear, this one must be coupled with a reference.

Calculation and experimental identification of the natural frequency and damping of a
gear pair is still far from being considered as well established. The identification method
of modal parameters introduced in the present work gives an instrument to interpret
experimental results.

The proposed approach presents some advantages with respect to the metrological
methods used to measure gear errors on driving and driven gears [10]; errors are usually
measured on only one or few transverse sections of the gears. These metrological methods,
which use control machines, provide the charts of profile errors and cumulative pitch and
runout errors for each tooth of the two gears (Figure 1). On the other hand, by using the
technique presented here, the equivalent error is identified; it is directly related to the gear
vibrations and, thus, is particularly appropriate to evaluate the gear accuracy from a
dynamic point of view. In fact, it is well known that some modifications of the tooth
involute profile can provide a reduction of the vibration level, and hence, the effect of these
modifications, in addition to the accuracy of gear profiles and mounting, can be checked
by using the equivalent error. The proposed method could be also useful for the condition
monitoring of a gear pair.

The effect of noise on the identification of the equivalent error and modal parameters
is also investigated. Some simulated tests are performed with noise polluted vibration
responses of the gear pair. The method is applied to identify modal parameters and the
equivalent error of a gear pair having only profile errors.
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Figure 1. Relation between the profile error chart and the involute tooth profile by reference [15].

2. VIBRATION SIMULATION

A pair of spur gears is modelled with two disks coupled by non-linear mesh stiffness,
mesh damping and excitation due to gear errors. One disk (the driving gear) has radius
R1 and the mass moment of inertia of the pinion-shaft system is I1, while the other (the
driven gear) has radius R2 and the mass moment of inertia of the gear-shaft system is I2.
The radii R1 and R2 correspond to the radii of the base circles of the gears 1 and 2,
respectively.

The transmission error, defined as the difference between the actual and ideal positions
of the driven gear, is expressed as a linear displacement along the line of action. The sign
convention used for the transmission error is positive behind the ideal position of the
driven gear. Analyzing gears with low contact ratio o (i.e., 1Q oQ 2), the non-linear
equation of motion for the dynamic transmission error x can be written as (Figure 2):

mẍ+ cẋ+ f1(x, t)+ f2(x, t)=W0, (1)

where

x=R1u1 −R2u2, (2)

Figure 2. Single-degree-of-freedom model of a pair of spur gears.
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u1 and u2 being the angular displacements of the two gears; the equivalent mass of inertia
m of the system is:

m= I1I2/(I1R2
2 + I2R2

1 ); (3)

W0 is the static load given by

W0 =T1/R1 =T2/R2, (4)

T1 and T2 being the driving and driven torques, respectively; fj (x, t) are the elastic forces
of the meshing tooth pair j, for j=1, 2

fj (x, t)=6kj (t)[x− ej (t)]
0

when x− ej (t)q 0
when x− ej (t)E 0.

(5)

Obviously, equation (1) can be easily extended to high contact ratio gears. In equation (5),
k1(t) and k2(t) are the time-varying meshing stiffnesses of the two pairs of meshing teeth.
The error functions e1(t) and e2(t) are the displacement excitations along the line of action
representing the relative gear errors of the meshing teeth as shown in Figure (2). When
two pairs of teeth come into contact there will be two separate error functions, each acting
on a different spring. It is assumed that positive error functions give a positive transmission
error. Error functions represent the sum of pitch, profile, pressure angle and runout errors.
The relation between the flank deviation and the gear errors measured along the line of
action is shown in Figure (1). Deviations are assumed to be small enough so that tooth
contacts remain on the theoretical line of action [4]. Moreover, from equation (5), the
dynamic forces fj (x, t) become zero when separation of tooth pairs occurs. This is due to
the relative vibrations and backlash between the gear teeth; the dynamic forces are the
non-linear terms in the equation of motion. In equation (1) a constant viscous damping
having coefficient c is assumed.

The total stiffness of the gear pair is given by k(t)= k1(t)+ k2(t). Introduce the meshing
circular frequency v= zV	 , where V	 is the angular velocity of the driven gear (rad/s) and
z its number of teeth. The stiffness kj (t), which is a periodic function, is assumed to have
a principal period T=2p/v. The stiffness is assumed to be independent of the geometrical
errors; this hypothesis could be incorrect for lightly loaded gears. The behaviour of kj (t)
and k(t) are discussed in references [3, 6, 10] and in section 4.

In the present paper, the case when x− ej (t)q 0, i.e., when there is contact between
the two gears, is considered. Hence, the following study is correct when there is no tooth
separation between driving and driven gears. The phenomenon of tooth separation is
described in reference [13]. The equation of motion (1) can then be written as a second
order linear ordinary differential equation:

ẍ+2zv0ẋ+v2
0K(t)x=F0 +v2

0K1(t)e1(t)+v2
0K2(t)e2(t), (6)

where K(t)= k(t)/km , K1(t)= k1(t)/km , K2(t)= k2(t)/km , F0 =W0/m and z= c/(2mv0) is
the damping ratio; K, K1 and K2 are non-dimensional functions. Furthermore, the average
value of the mesh stiffness is km =(1/T)fT

0 k(t) dt and v0 =zkm /m is the natural circular
frequency of the undamped system with stiffness equal to its integral average value.
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It is useful to introduce the following Fourier expansion of the equivalent gear error
n(t) [m]

n(t)=K1(t)e1(t)+K2(t)e2(t)= s
a

n=−a

dn einVt, (7)

where i is the imaginary unit and n(t) represents the equivalent error of the gear pair; n(t)
is the excitation due to gear errors on the right-side of equation (6). The same tooth of
the driving and driven gears mesh together only after a period szT, where s and s1 are the
integers that express the gear ratio t as the rational number t= s/s1 (usually tE 1).
Therefore, the function n(t) has a principal circular frequency V=V	 /s.

Equation (6) can be used to identify n(t) by quasi-static measurement (loaded
transmission error). In fact, for very slow pinion rotational speed, ẍ and ẋ can be neglected
in equation (6). However, this identification requires very accurate sensors for angular
displacement (encoders). In fact, measurement of u1 and u2 must be very accurate in order
to obtain the actual x by using equation (2).

It is interesting to observe that, in many cases, the profile errors can be considered the
same for all the gear teeth, i.e., they all have principal period T. Thus, the coefficients dn

for n= sz, 2sz, 3sz, . . . are due to periodic profile errors, whereas the others are due to
pitch and runout errors. In particular, runout errors affect coefficients dn for
n= s, 2s, 3s, . . . because they have principal period zT. In some cases only the
measurement of profile errors is required.

The expansion of the non-dimensional total meshing stiffness is

K(t)= s
a

j=−a

aj eijszVt. (8)

The solution of the equation of motion (6) is obtained by using the harmonic balance
method, and the dynamic transmission error x is therefore expanded into a complex
Fourier series

x(t)= s
a

n=−a

cn einVt. (9)

Substituting equations (7)–(9) into equation (6), results in the following equation:

s
a

n=−a $−n2V2cn +2inzv0Vcn +v2
0 s

a

j=−a

cn− szjaj% einVt =F0 +v2
0 s

a

n=−a

dn einVt. (10)

A simple manipulation of equation (10) produces the following algebraic linear system

AC=F, (11)

where the elements of the matrix A are given by

An,j =(−n2V2 +2inzv0V)dn,j +v2
0cn,ja(n− j)/(sz), (12)

where dn,j is the Kronecker delta and

cn,j =610 if (n− j)/(sz) is integer
otherwise 7
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and

cN v2
0dN

···
···

c1 v2
0d1

C= c0 , F= F0 +v2
0d0 . (13, 14)g
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3. IDENTIFICATION OF MODAL PARAMETERS AND GEAR ERRORS

The aim of this work is to identify the equivalent gear error; therefore the vector F in
equation (11) is unknown. On the other hand, the contact ratio o, the shape of the stiffness
function K(t) and all the constants an of the expansion are known. The transmission error
x(t) is then experimentally measured for different rotational speeds V	 of the driven gear.
It is important to note that V=V	 /s, thus either V or V	 can be used as variable. In
particular, only rotational speeds where no tooth separation occurs must be chosen. It is
obvious that the dynamic transmission error varies according to the speed V	 , so that the
coefficients cn of the expansion and the vector C are functions of V	 . Equation (12) shows
that the matrix A is also a function of V	 , whereas the vector F is independent of it. Thus,
the equation can be rewritten as:

F=A(V	 )C(V	 ). (15)

In equation (15), the vector C(V	 ) is obtained experimentally whereas the matrix A(V	 ) is
obtained theoretically by using equation (12). However, in order to compute the matrix
A, the modal parameters v0 and z of the system must be identified because they appear
in equation (12). These parameters can be determined by using the following equation:

A(V	 1)C(V	 1)=A(V	 2)C(V	 2)=A(V	 i )C(V	 i )= constant, (16)

where V	 i are fixed rotational speeds. Then,

s
a

n=−a $−n2V2cn +2inzv0Vcn +v2
0 s

a

j=−a

cn− szjaj%=constant. (17)

By computing the left-side of equation (17) for different rotational speeds, e.g., V	 1, V	 2, V	 3,
and subtracting first the quantity computed for V	 2 from the one computed for V	 1 followed
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by the subtraction of the quantity computed for V	 3 from the one computed for V	 1, one
obtains the following linear system:

s
a

n=−a

2ni[(V	 1/s)cn (V	 1)− (V	 2/s)cn (V	 2)] s
a

n=−a

s
a

j=−a

aj [cn− szj (V	 1)− cn− szj (V	 2)]

G
G

G

G

G

K

k

G
G

G

G

G

L

l
s
a

n=−a

2ni[(V	 1/s)cn (V	 1)− (V	 3/s)cn (V	 3)] s
a

n=−a

s
a

j=−a

aj [cn− szj (V	 1)− cn− szj (V	 3)]

zv0

s
a

n=−a

n2[(V	 1/s)2cn (V	 1)− (V	 2/s)2cn (V	 2)]

g
F

f
h
J

j
g
G

G

G

G

F

f

h
G

G

G

G

J

j

×
v2

0
=

s
a

n=−a

n2[(V	 1/s)2cn (V	 1)− (V	 3/s)2cn (V	 3)]
. (18)

The linear system (18) allows the identification of the modal parameters v0 and z and, using
equation (15), the vector F that gives the equivalent gear error. If the quantity v2

0d0 is
negligible with respect to F0, the ratio W0/m can also be identified. Hence, if the static load
W0 is known, the reduced mass m of the system is obtained. Actually all the constant terms
of the identified vector F can be attributed to the static load, making d0 zero. In fact, the
static load can be considered the mean value of the load during the gear meshing and a
non-zero coefficient d0 is equivalent to a change in the static load. For gears with corrected
profiles, d0 can be different from zero; the coefficient d0 $ 0 can be identified when the static
load and the inertia of the gear system are known.

In system (18) one can substitute the quantity V	 2 −V	 3 for one of the two differences
previously computed. However, it is important to note that, with measurements at three
different speeds, only two linearly independent equations can be obtained for the system
(18).

Due to the errors introduced in the experimental measurement of the dynamic
transmission error x (errors in C), it is preferable to solve an overdetermined system using
different velocities to obtain additional equations in system (18). Moreover, the problem
is ill-conditioned, so that the errors of the known vector C are amplified in the solution.
In order to overcome this problem, it is necessary to use only the more significant
harmonics in the identification when significant measurement errors or differences between
the single-degree-of-freedom model and the actual test bench are observed. Consequently,
all the sums involved in system (18) must be stopped at integers n and j which are not too
large, since higher order harmonics involved in C only introduce noise and do not give
additional information. This process is similar to the use of a low-pass filter on signals
coming from sensors in experiments. A discussion on this phenomenon is deferred to
section 5. The natural circular frequency of the system can also be evaluated theoretically
or experimentally and the damping ratio can also be experimentally determined by an
impact test, when the system is not rotating, using the logarithmic decrement. The damping
ratio can be assumed to vary between 0·07 and 0·1 for some applications, as verified by
many authors, e.g., references [6, 10]. The results of the identification can therefore be
compared with data obtained in a different way.

The vector F can be determined by using equation (15) or the following expression:

F=(1/I) s
I

i=1

A(V	 i )C(V	 i ). (19)
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Figure 3. (a) The non-dimensional meshing stiffnesses K1(t) and K2(t). (b) The total meshing stiffness K(t).

This procedure provides a good accuracy in the computation in the presence of
measurement errors. The average introduced in equation (19) reduces the errors introduced
in the experimental measurement of x (and consequently in C). Furthermore, in this case
it could be useful to avoid high harmonics, because a very high noise level undoubtedly
affects them.

4. APPLICATION OF THE METHOD

In order to apply the proposed method, a function describing the stiffness of the gear
pair must be determined. In the paper of Umezawa et al. [10], seven different stiffness
functions are discussed; differences between these functions are mainly due to a different
simulation of the behaviour of the stiffness in the region where there is the interference
of the tip of tooth (called tooth tip meshing).

The stiffness function proposed by Cai and Hayashi [6] was used in the numerical
simulations performed in the present study. This formula depends only on the contact ratio
o and is independent of the transmitted torque. Obviously, the proposed method can be
used with different expressions of the meshing stiffness. In particular, the following
function is introduced:

f(t)=
1

0·85o $−1·8
(oT)2 [t+((o−1)/2)T]2 +

1·8
oT

[t+((o−1)/2)T]+0·55]. (20)
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The two non-dimensional meshing stiffnesses K1(t) and K2(t) are directly obtained from
equation (20)

K1(t)= f(t) for 0E tET, (21)

K2(t)=6f(t−T)
0

if tqT−((o−1)/2)T
if tET−((o−1)/2)T7+6f(t+T)

0
if tQ ((o−1)/2)T
if te ((o−1)/2)T7

for 0E tET. (22)

The two non-dimensional meshing stiffnesses K1(t) and K2(t) are shown in Figure 3(a)
(o=1·8) along the meshing period T=2p/v, and the non-dimensional total meshing
stiffness K(t) is plotted in Figure 3(b). The integral average stiffness of the pair km is related
to the maximum stiffness of one pair of teeth kMAX by the following expression:
km =0·85okMAX . The ISO/DIS 6336-1.2 (1990) design code gives a formula to evaluate
kMAX .

In order to simplify the experimental measurement of the dynamic transmission error,
sometimes measurement on only one gear is performed. Usually the acceleration of the
driven gear ẍ2 =R2u� 2 is measured; however, the acceleration ẍ can be obtained by using
the following relationship:

ẍ2 =
m1ẍ+F1(t)−F2(t)

m1 +m2
, (23)

where m1 = I1/R2
1 and m2 = I2/R2

2 are the reduced masses of the driving gear–shaft and the
driven gear–shaft system and F1 and F2 are the forces acting on the driving and driven gears
as a consequence of the driving and driven torques T1 and T2, respectively. Using m1 and
m2, the equivalent inertia mass m of the system, equation (3), is m=(m1m2)/(m1 +m2). It
is to note that forces F1 and F2 are not necessarily equal in dynamic conditions. Their
difference generates a movement of the centre of mass of the two masses’ system m1 and
m2. However, if a good motor and brake are used and torsionally compliant joints are
interposed in the connection of the motor and brake to the gears, the difference between
forces F1 and F2 can be neglected with respect to m1ẍ. In fact, oscillations of the centre
of mass of the system m1 and m2 are considered to have a natural frequency (due to joint
flexibility) much lower (and therefore uncoupled) than the natural meshing frequency and
rotational speed. A filter can eliminate this low-frequency effect due to forces F1 and F2.

The measured acceleration can be related to coefficients cn by equation (9) to yield:

ẍ2 =−
m1

m1 +m2
V2 s

a

n=−a

cnn2 einVt. (24)

Equation (24) shows that the coefficient c0 cannot be obtained by vibration measurement.
However, this coefficient can easily be determined because it is the mean value of the
dynamic transmission error x. A good estimation of this value is c0 =W0/km for gears with
ideal involute profile, while Munro [29] has shown that for spur gears with symmetric long
relief c0 =W0/kminimum under specific conditions. In the identification process it is very
important to only use measured accelerations when no teeth separation occurs. Thus, it
is generally necessary to avoid rotational speeds larger than half the main resonance speed
v0. It is also important to synchronize the stiffness functions with the measured response.

In the past some experimental apparatus were designed to measure the dynamic
transmission errors of spur gear pairs. Usually, they are assembled in order to minimize
the bending of the shafts and the deflection of bearings. Gregory et al. [33, 34] described
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the experiments performed by Munro on a ‘‘four-square test rig’’ that has a test gear pair
and a slave gear pair for power recirculation. Another apparatus was built by Umezawa
et al. [10] without power recirculation. Both the apparatus showed the effect of bearings
vibration on the measured dynamic response. More recently, Cai and Hayashi [6] used high
stiffness air bearings in order to minimize the effects of bearings. Another sophisticated
test rig with power recirculation was assembled by Blankenship and Kahraman [30, 31].
They used oversized ultra-precision spherical roller bearings which are themselves
supported by rigid bearings pedestals; they obtained results according to a
single-degree-of-freedom model. This recent trend of research is in the direction of
experimental apparatus that have more and more the characteristics required by our
identification method.

Based on the cited papers, the benchmark for gears can be obtained by a variable speed
motor and a brake, or can be the ‘‘four-square test rig’’ that has a test gear pair and a
slave gear pair for power recirculation [30, 31]. Stiff shafts in bending and torsion,
compliant elastomeric couplings with very low natural frequency, and stiff bearings must
be used in order to approximate well a single-degree-of-freedom system. The rotational
speed can be measured by a proximity sensor that counts the number of passing teeth and
can be used also as a synchronizer; the load is measured by a dynamometer and the
acceleration of the driven gear by accelerometers. A slip ring is introduced to bring the
signals to the amplifier. Alternatively, a laser rotational vibrometer can be employed to

Figure 4. Profile errors of the studied gear pair. (a) Relative gear errors obtained by data reported in reference
[10]. (b) Error functions e1 (——), and e2 (–––).
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Figure 5. Results of the identification with an error level lev=0·02. (a) Percentage difference between the
identified v0 and the actual value versus the number of harmonics used in the identification. (b) Percentage
difference between the identified z and the actual value versus the number of harmonics.

measure vibrations of the driven gear; in this case accelerometers, slip ring and summing
amplifier can be eliminated.

5. NUMERICAL RESULTS

To verify the proposed method, the gear pair tested by Umezawa et al. [10] is studied.
The two gears are finished by a MAAG grinding. The characteristics of both gears are:
module=4, number of teeth=48, face width=10 mm, pressure angle=14·5°, diameter
of standard pitch circle=192 mm and gear ratio=1. The natural circular frequency is
v0 =48×3062 r.p.m. (2450 Hz) and the damping ratio z=0·07. The contact ratio o is 1·8,
the rotational speed range V	 =400t 3000 r.p.m. (41·89t 314·16 rad/s), the
torque=196 Nm and the teeth have an involute profile. It is assumed that only profile
errors are significant in this case, hence, all the other errors are neglected. As a consequence
of this hypothesis, the dynamic transmission error has a principal period equal to the
meshing period T. The profile errors are approximately 6 mm at the root of the driving
gear and at the tip of the driven gear; these profile errors are reported in reference [10]
for one transverse section. The relative error (sum of errors on the driving and driven gears)
of a tooth pair of this gear system is reported in Figure 4(a) for the whole path of contact.
The gear errors functions e1 and e2 are directly obtained by the procedure graphically
shown in Figure 4. In particular, the relative error of Figure 4(a) is divided into three parts;
part ‘‘b’’ corresponds to the central arc of temporal length T, while the entire contact
length of a pair of teeth is oT. The three parts are arranged as shown in Figure 4(b) in
order to obtain the two error functions e1 and e2.
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In reference [10], as well as in other papers, few experimentally measured responses of
rotational vibration are reported. As a consequence, it was preferred to use responses
theoretically computed for the gear pair studied in reference [10]. Hence, all the
accelerations used in the following part of this section were simulated; only in section 5.1
are experimental data used to identify the equivalent error.

The computed responses of the gear pair are polluted with noise. In particular, the
response x is discretized with 201 points in the period T and the noise is then added to
the response before computing the vector C. The noise is generated using random numbers
added to the time response. These random numbers are obtained by a normal distribution
having zero mean value and variance s= lev · max, where max is the maximum value of
the response x in the period and lev is the error level. As a consequence of the assumed
distribution, 68% of the points have noise within 2s, 95% within 22s and 99·7% within
23s.

First, equation (18) is used to identify the modal parameters of the system from noise
polluted responses. In particular eight responses at rotational speeds V	 =60, 65, 68, 70,
80, 90, 100, 120 rad/s with an error level lev=0·02 are employed. This error level gives
responses having a difference within 26% of the maximum value (for 99·7% of points)
with respect to the true value. In Figure 5(a) the percentage difference between the
identified natural frequency v0 and the actual value is plotted versus the number of
harmonics of both the meshing stiffness and the vibration responses used in the
identification, equation (18). The range of harmonics of the meshing frequency v= zV	
that gives correct results is 4E n= jE 8. In Figure 5(b) the data relative to the damping
ratio z are reported. Figure 6 is similar to Figure 5 but is obtained for an increased error
level lev=0·04 (noise within 212% of the maximum value). In this case, the range of

Figure 6. Results of the identification with an error level lev=0·04. (a) Percentage difference between the
identified v0 and the actual value. (b) Percentage difference between the identified z and the actual value.
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Figure 7. Actual equivalent gear error n(t) for the studied gear pair.

useful harmonics decreases. Note that this error level is quite large. Figures 5 and 6 show
that increasing largely the number of harmonics is not convenient. In fact, for the problem
considered, the amplitude of coefficients cn decreases with n so that higher order harmonics
are largely affected by the noise. The identification process being an ill-conditioned
problem, it is necessary to employ only harmonics having a good signal to noise ratio.

The identification process gives both the natural frequency v0 and the damping ratio
z of the rotating gear pair. It was verified numerically that identification of these modal
parameters at rotational speeds below the secondary resonance gives more accurate results.
In fact, in this case, the larger harmonic of the response has at least two waves, hence,
a good signal to noise ratio was obtained for the first harmonics.

In Figure 7, the equivalent error obtained by using the profile errors reported in Figure
4 and in reference [10] is shown; this can be called the ‘‘actual’’ equivalent error.

The equivalent error is identified in Figure 8 by using a response at V	 =60 rad/s without
noise and equation (15). In this case, 15 harmonics are used to describe the function. The
difference between Figures 7 and 8 can definitively be attributed to the truncation error.

Figure 8. Identified equivalent gear error by response without noise.



–2

–1

1

2

0

0 T

t

(m
) 

(x
 1

0–6
)

–2

–1

2

1

3

0

0 T

t

(m
) 

(x
 1

0–6
)

.   . 352

Figure 9. Identified equivalent gear error by responses with a noise level lev=0·02; actual modal parameters.

Eight responses at rotational speeds V	 =60, 65, 68, 70, 80, 90, 100, 120 rad/s polluted
with an error (noise) level lev=0·02 (error 26%) are then used to identify the equivalent
error. In this case equation (19) is utilized. The result is given in Figure 9, where the actual
modal parameters (v0 and z) are used. Figures 8 and 9 are very similar and they describe
well the ‘‘actual’’ error reported in Figure 7. The effect of an incorrect identification of
the modal parameters v0 and z on the evaluation of the equivalent gear error is then
investigated in Figure 10. In this case, an error of +10% on the frequency and +40%
on the damping ratio is used to evaluate the equivalent error by polluted responses having
a noise level lev=0·02. A reasonably correct result is also obtained.

The case of a noise level lev=0·04 (error 212%), combined with the use of an error
of +10% on the frequency and +40% on the damping ratio, is studied in Figure 11. A
fairly good evaluation of the equivalent error is also reached in this case, where only the
first ten harmonics of the responses and mesh stiffness are used. In fact, this figure presents
less high-frequency noise than Figures 9 and 10.

Figure 10. Identified equivalent gear error by responses with a noise level lev=0·02; +10% of the actual value
on v0 and +40% on the actual value of z.
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Figure 11. Identified equivalent gear error by responses with a noise level lev=0·04; +10% of the actual value
on v0 and +40% on the actual value of z.

5.1.    

The experimental acceleration of the studied gear pair is only available in reference [10]
with a reasonably accurate figure at a rotational speed of 1200 r.p.m. The acceleration was
measured on the driven gear and is shown in Figure 12, where it is synchronized with
respect to the stiffnesses K1, K2 and K reported in Figures 3(a) and (b). Thus, the
acceleration relative to a single pair of teeth in contact is in the central part of Figure 12.
The equivalent error is then identified by using this experimental result and is shown in
Figure 13. This was done by expanding the acceleration of Figure 12 into the Fourier series
given in equation (9). The time origin is the same as in Figure 12, in order to have the
acceleration relative to a single pair of teeth in contact in the central part of period T (as
done for K). Thus, Figure 13 was obtained by using equation (15), where vector C contains
the Fourier coefficients of the experimental acceleration, as previously described. Note that
this acceleration is affected by the vibration of the bearings, as a consequence of the test
rig used. This problem is well described in reference [10]. Therefore the identified equivalent

Figure 12. Measured acceleration on the driven gear of the studied gear pair reported in reference [10] at
1200 r.p.m.
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Figure 13. Identified equivalent gear error by using the experimental acceleration at 1200 r.p.m.

error is not so close to the ‘‘actual’’ one. In this case, it was not possible to identify the
modal parameters using equation (18) and the equivalent error was therefore obtained by
equation (15) due to the few data available in reference [10]. Furthermore, the ‘‘actual’’
equivalent gear error, Figure 7, was obtained by using metrological gear errors measured
on only one transverse section of the gears. Hence, the effective behaviour of the gear pair
is different from the one simulated. Lastly, it is interesting to note that the equivalent gear
error shown in Figure 13 gives a significant reduction of the vibration amplitude with
respect to an ideal involute profile of all the teeth of the gear pair.

6. CONCLUSIONS

The proposed method gives a powerful instrument for the identification of the natural
frequency and damping of a gear pair tested in working conditions. In fact, determination
of modal parameters of a gear pair is still far from being considered as well established.
The reconstruction of the equivalent gear error by acceleration measurement of the driven
gear of a spur gear pair is also reasonably good in the case of data affected by noise. In
particular the identification of the natural frequency and damping of the system is obtained
by an overdetermined linear system to minimize the error; to obtain correct results only
lower order harmonics must be considered. Then, this data can be used to evaluate the
equivalent gear error that is not largely affected by the inaccuracy in the identification of
the natural frequency and damping.

The proposed method seems to have advantages in the quality control of a large
production of gears having the same centre distance; in this case the same housing can
be used. The gear can be tested together with a reference gear or with the companion gear
to check the actual gear pair. Moreover the method could be useful for the condition
monitoring of a gear pair. As a limitation, it can only be applied to systems having stiff
bearings and torsionally compliant axes, requiring an appropriately designed test bench.

The identified equivalent gear error does not present the problem of metrological data
that are usually obtained on only one or few transverse sections of the gears. On the
contrary, it describes the global behaviour of the pair, similar to quasi-static transmission
error measurements.
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APPENDIX: NOMENCLATURE

c damping coefficient (N s/m)
C vector of Fourier coefficients of x
e1 error function of gear 1 (m)
e2 error function of gear 2 (m)
F vector of gear error coefficients
F0 =W0/m, (m/s2)
I1 mass moment of inertia of pinion–shaft (kg m2)
I2 mass moment of inertia of gear–shaft (kg m2)
k = k1 + k2, total meshing stiffness (N/m)
k1 stiffness of first pair of meshing teeth (N/m)
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k2 stiffness of second pair of meshing teeth (N/m)
km integral average of mesh stiffness (N/m)
K = k/km =K1 +K2

K1 = k1/km

K2 = k2/km

lev noise level
m equivalent mass of gear system (kg)
m1 equivalent mass of gear 1 (kg)
m2 equivalent mass of gear 2 (kg)
R1 radius of base circle of gear 1 (m)
R2 radius of base circle of gear 2 (m)
t time (s)
T meshing principal period (s)
T1 driving torque (N m)
T2 driven torque (N m)
W0 static load (N)
x dynamic transmission error (m)
z number of teeth of driven gear
o contact ratio
n equivalent error of gear pair (m)
u1 angular displacement of gear 1 (rad)
u2 angular displacement of gear 2 (rad)
v meshing circular frequency (rad/s)
v0 =zkm /m, natural circular frequency (rad/s)
V	 angular velocity of driven gear (rad/s)
z = c/(2mv0), damping ratio


